다음 사이트를 참조하자
CSS와 HTML 연동 http://igotit.tistory.com/entry/css-cascading-style-sheets-%EC%9A%94%EC%A0%90%EC%A0%95%EB%A6%AC
CSS: 선택자(Selector) 이해 http://www.nextree.co.kr/p8468/
실용적인 HTML/CSS태그 정리 http://blog.naver.com/PostView.nhn?blogId=shimjy1&logNo=220383323521&redirect=Dlog&widgetTypeCall=true
CSS 속성을 정리
CSS 속성 요약 정리 http://durst.tistory.com/94
CSS 속성 모음 1 http://ggachi.ncity.net/TIP/5619
CSS 속성 모음 display inline과 block http://ggachi.ncity.net/TIP/5617
CSS 속성 모음 float http://ggachi.ncity.net/TIP/5617
CSS 속성 모음 margin http://ggachi.ncity.net/TIP/5611
CSS 속성 모음 position http://ggachi.ncity.net/TIP/5608
CSS 속성 모음 position http://ggachi.ncity.net/TIP/5603
CSS(Cascading Style Sheets)속성정리 http://kangel77.egloos.com/v/6214214
CSS 속성 float의 모든 것 http://techbug.tistory.com/181
CSS 시각적 가이드 http://cssreference.io/
다음과 같은 수열을 피보나치 수열이다.
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
파이썬으로 한다면
def fibonacci ( n ) :
a, b = 0 , 1
while a < n :
print (a, end=" ")
a, b = b, a+b
fibonacci (2000)
To install the faster R-CNN on TitanX
refer to the URL https://github.com/smallcorgi/Faster-RCNN_TF
and do the following
pip install matplotlib.pyplot
pip install scipy
apt-get install python-tk
In tensorflow0.12, I just modified @tf.RegisterShape("RoiPool") to @ops.RegisterShape("RoiPool"), and it worked for me. Maybe you could try it.
pip install pyyaml
First, download VGGnet_fast_rcnn_iter_70000.ckpt, and then
~/FNRCC/tools $) python /demo.py --model ./VGGnet_fast_rcnn_iter_70000.ckpt
refer to the URL https://myurasov.github.io/2016/11/27/ssd-tx1.html
sudo apt-get install libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install libopenblas-dev
OPENCV_VERSION := 3
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_52,code=sm_53 \ ( 53 추가 )
-gencode arch=compute_61,code=sm_61
PYTHON_LIB := /usr/lib/x86_64-linux-gnu ( intel CPU Desktop )
PYTHON_LIB := /usr/lib/aarch64-linux-gnu ( Arm CPU Desktop )
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib
and add lib to Makefile like this: in Makefile LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial boost_regex
sudo mount -t cifs //172.21.26.47/titanx-home/TX1/share /home/ubuntu/opencv/build2 -o username=ysc,password=lge123
sudo apt-get install build-essential cmake git pkg-config
sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12-dev
sudo apt-get install libgtk2.0-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt-get install libatlas-base-dev gfortran
sudo apt-get install python2.7-dev
wget https://bootstrap.pypa.io/get-pip.py --no-check-certificate
sudo python get-pip.py
pip install numpy
$ cd ~
$ git clone https://github.com/daveselinger/opencv
$ cd opencv
$ git checkout 3.1.0-with-cuda8
$ cd ~
$ git clone https://github.com/Itseez/opencv_contrib.git
$ cd opencv_contrib
$ git checkout 3.1.0
만일 “Deep-Learning-install-OpenCV.md”을 이용해서 opencv을 compile시킬 때, 다음과 같은 error가 나온다.
/home/epinux/dev/opencv_contrib/modules/tracking/include/opencv2/tracking/onlineMIL.hpp:57:23: error: expected unqualified-id before ‘>’ token
#define sign(s) ((s > 0 ) ? 1 : ((s<0) ? -1 : 0))
이를 수정하기 위해서는 다음을 참조한다. https://github.com/opencv/opencv_contrib/issues/618
즉
opencv_contrib/modules/tracking/include/opencv2/tracking/onlineMIL.hpp:
#define sign(s) ((s > 0 ) ? 1 : ((s<0) ? -1 : 0)) ==> #define sgn(s) ((s > 0 ) ? 1 : ((s<0) ? -1 : 0))
그리고 다음을 수정한다.
opencv_contrib/modules/tracking/src/onlineMIL.cpp :
310: from a sign() call to a sgn() call
339: from a sign() call to a sgn() call
/usr/include/boost/property_tree/detail/json_parser_read.hpp:257:264: error: ‘type name’ declared as function returning an array
make: *** [.build_release/cuda/src/caffe/layers/detection_output_layer.o] Error 1
To solve the above , update the gcc, g++ compiler version to above 5. refer to https://github.com/BVLC/caffe/issues/4957
$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test
$ sudo apt-get update
$ sudo apt-get install gcc-5 g++-5
and then delete and create the gcc, g++ link
$ sudo rm /usr/bin/gcc
$ sudo rm /usr/bin/g++
$ sudo cd /usr/bin
$ sudo ln -s gcc-5 gcc
$ sudo ln -s g++-5 g++
LIBRARIES += glog gflags protobuf boost_system boost_filesystem boost_regex m hdf5_hl hdf5 boost_regex
# LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial boost_regex
refer to the URL https://github.com/DrewNF/Build-Deep-Learning-Env-with-Tensorflow-Python-OpenCV
$ sudo apt-get update
$ sudo apt-get upgrade
Now we need to install our developer tools:
$ sudo apt-get install build-essential cmake git pkg-config
OpenCV needs to be able to load various image file formats from disk, including JPEG, PNG, TIFF, etc. In order to load these image formats from disk, we’ll need our image I/O packages:
$ sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12-dev
how do we display the actual image to our screen? The answer is the GTK development library, which the highgui module of OpenCV depends on to guild Graphical User Interfaces (GUIs):
$ sudo apt-get install libgtk2.0-dev
what about processing video streams and accessing individual frames? We’ve got that covered here:
$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
Install libraries that are used to optimize various routines inside of OpenCV:
$ sudo apt-get install libatlas-base-dev gfortran
$ sudo apt-get install libhdf5-dev
if a Python package manager is needed ? install pip :
$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py
$ cd ~
$ git clone https://github.com/daveselinger/opencv
$ cd opencv
$ git checkout 3.1.0-with-cuda8
You can replace the 3.1.0 version with whatever the current release is. Be sure to check OpenCV.org for information on the latest release.
We also need the opencv_contrib repo as well. Without this repository, we won’t have access to standard keypoint detectors and local invariant descriptors (such as SIFT, SURF, etc.) that were available in the OpenCV 2.4.X version. We’ll also be missing out on some of the newer OpenCV 3.0 features like text detection in natural images:
$ cd ~
$ git clone https://github.com/Itseez/opencv_contrib.git
$ cd opencv_contrib
$ git checkout 3.1.0
make sure that you checkout the same version for opencv_contrib that you did for opencv above, otherwise you could run into compilation errors
Time to setup the build:
$ cd ~/opencv
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D INSTALL_C_EXAMPLES=ON \ -D INSTALL_PYTHON_EXAMPLES=ON \ -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ -D BUILD_EXAMPLES=ON ..
Here some very important options, read carefully :
CMAKE_BUILD_TYPE : This option indicates that we are building a release binary of OpenCV.
CMAKE_INSTALL_PREFIX : The base directory where OpenCV will be installed.
PYTHON2_PACKAGES_PATH : The explicit path to where our site-packages directory lives in our cv virtual environment.
PYTHON2_LIBRARY : Path to our Hombrew installation of Python.
PYTHON2_INCLUDE_DIR : The path to our Python header files for compilation.
INSTALL_C_EXAMPLES : Indicate that we want to install the C/C++ examples after compilation.
INSTALL_PYTHON_EXAMPLES : Indicate that we want to install the Python examples after complication.
BUILD_EXAMPLES : A flag that determines whether or not the included OpenCV examples will be compiled or not.
OPENCV_EXTRA_MODULES_PATH : This option is extremely important — here we supply the path to the opencv_contrib repo
that we pulled down earlier, indicating that OpenCV should compile the extra modules as well.
The compiling options changes depending on the version of python and most depending on how we are installing all the libraries and the dependencies.
In order to build OpenCV 3.1.0, you need to set -D INSTALL_C_EXAMPLES=OFF (rather than ON) in the cmake command. There is a bug in the OpenCV v3.1.0 CMake build script that can cause errors if you leave this switch on. Once you set this switch to off, CMake should run without a problem.
Now we can finally compile OpenCV:
$ make -j4
Where you can replace the 4 with the number of available cores on your processor to speedup the compilation. OpenCV Linking: If we have installed OpenCV globally on your PC and you want to link it to the virtualenv, we need to export the two following paths:
** export PYTHONPATH="${PYTHONPATH}:/my/other/path"** (Example of path: /opt/amd64/opencv-3.1.0/lib/python2.7/dist-packages)
** export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/my/other/path"** (Example of path: /opt/amd64/opencv-3.1.0/lib)
export PYTHONPATH="${PYTHONPATH}:/usr/local/lib/python2.7/dist-packages :: .bashrc
Assuming that OpenCV compiled without error, you can now install it on your Ubuntu system:
$ sudo make install
$ sudo ldconfig
If you’ve reached this step without an error, OpenCV should now be installed in ** /usr/local/lib/python2.7/site-packages**. However, our cv virtual environment is located in our home directory — thus to use OpenCV within our cv environment, we first need to sym-link OpenCV into the site-packages directory of the cv virtual environment:
$ cd ~/.virtualenvs/cv/lib/python2.7/site-packages/
$ ln -s /usr/local/lib/python2.7/site-packages/cv2.so cv2.so
Due to install error, we should copy cv2.so
$ sudo cp ~/opencv/build/lib/cv2.so /usr/local/lib/python2.7/dist-packages/
Your output should be:
>>> import cv2
>>> cv2.__version__ '3.0.0'
$ cd ~
$ wget https://s3-eu-west-1.amazonaws.com/christopherbourez/public/cudnn-6.5-linux-x64-v2.tgz
Add to your .bashrc
export GLPATH=/usr/lib
export __GL_PERFMON_MODE=1
export TF_NEED_CUDA=1
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/lib:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:$PATH
export PYTHONPATH=/usr/local/lib/python2.7/dist-packages:$PYTHONPATH
export CUDA_HOME=/usr/local/cuda
refer to the URL http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
만일 위의 URL이 잘 되지 않는다면 다음 URL을 활용한다. https://github.com/uher/InstallGpuEnableTensorflow
- download cuda_8.0.44_linux.run from https://developer.nvidia.com/cuda-downloads
- download NVIDIA-Linux-x86_64-375.39.run from http://www.nvidia.com/download/driverResults.aspx/114708/en-us
- run the following instructions. refer to http://askubuntu.com/questions/848221/installing-cuda-8-0-on-ubuntu-16-04-with-nvidia-geforce-845m
- sudo apt-get purge nvidia-*
- sudo service lightdm stop
- sudo ./NVIDIA-Linux-x86_64-367.57.run --no-opengl-files
다음 step 4에서 설치할 driver을 미리 설치한다. 즉 다음 step에서는 driver을 설치하지 않아야 한다.- sudo ./cuda_8.0.44_linux.run (you should not install its own nvidia-driver 367.48, as you have 367.57 already installed)
- in /usr/local/cuda-8.0/include/host_config.h, comment this line out:
#error – unsupported GNU version! gcc versions later than 5 are not supported!- insert the following in .bashrc
export PATH=/usr/local/cuda-8.0/bin:.:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
export GLPATH=/usr/lib- reboot
- download cudnn-8.0-linux-x64-v5.1.tgz from https://developer.nvidia.com/rdp/cudnn-download
$ sudo tar -xvf cudnn-8.0-linux-x64-v5.1.tgz -C /usr/local
Additionally
$ sudo apt-get install git
$ sudo apt-get install vim
$ sudo apt-get install python-pip python-dev
$ pip install –upgrade pip
$ sudo pip install numpy
To build TensorFlow from source, the Bazel build system must first be installed as follows
$ sudo apt-get install software-properties-common swig
$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer
$ echo “deb http://storage.googleapis.com/bazel-apt stable jdk1.8” | sudo tee /etc/apt/sources.list.d/bazel.list
$ curl https://storage.googleapis.com/bazel-apt/doc/apt-key.pub.gpg | sudo apt-key add -
$ sudo apt-get update
이후 다음을 하는 것 보다
$ sudo apt-get install bazel
아래를 하는 것이 더 최신의 것 임.
$ wget https://github.com/bazelbuild/bazel/archive/0.3.2.tar.gz
$ tar -xvzf 0.3.2.tar.gz
$ cd bazel-0.3.2/
$ sudo ./compile.sh
$ sudo cp output/bazel /usr/local/bin
$ cd ..
To obtain the best performance with TensorFlow we recommend building it from source.
First, clone the TensorFlow source code repository:
$ git clone https://github.com/tensorflow/tensorflow
$ cd tensorflow
다음을 하는 것 보다
$ git reset –hard 70de76e
아래를 하는 것이 더 안정적인 것 임.
$ git reset –hard 287db3a
그리고 configure을 하기 전에 다음을 실행한다.
1.computecpp을 설치한다. 다음을 참조하고 https://www.codeplay.com/products/computesuite/computecpp
tar을 풀어서 /usr/local 밑에 둔다.
2.zlib_archive의 new version을 설치한다. 다음과 같이 수정한다. https://github.com/tensorflow/tensorflow/issues/6594
edit tensorflow/workspace.bzl
replace zlib-1.2.8 with zlib-1.2.11
remove the sha256 line
혹은
diff –git a/tensorflow/workspace.bzl b/tensorflow/workspace.bzl
index 06e16cd..7c7b44c 100644
— a/tensorflow/workspace.bzl
+++ b/tensorflow/workspace.bzl
@@ -228,9 +228,8 @@ def tf_workspace(path_prefix = “”, tf_repo_name = “”):
native.new_http_archive(
name = “zlib_archive”,
- url = “http://zlib.net/zlib-1.2.8.tar.gz”,
- sha256 = “36658cb768a54c1d4dec43c3116c27ed893e88b02ecfcb44f2166f9c0b7f2a0d”,
- strip_prefix = “zlib-1.2.8”,
- url = “http://zlib.net/zlib-1.2.11.tar.gz”,
- strip_prefix = “zlib-1.2.11”,
build_file = str(Label(“//:zlib.BUILD”)),
)
configure script 실행에서 “Do you wish to build TensorFlow with GPU support?” 을 질문하지 않을 수 있으므로
export TF_NEED_CUDA = 1 하고 ( .bashrc 에 반영할 것. )
Then run the configure script as follows:
$ cd tensorflow
$ ./configure
Please specify the location of python. [Default is /usr/bin/python]: [enter]
Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] n
No Google Cloud Platform support will be enabled for TensorFlow
Do you wish to build TensorFlow with GPU support? [y/N] y
GPU support will be enabled for TensorFlow
Please specify which gcc nvcc should use as the host compiler. [Default is /usr/bin/gcc]: [enter]
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 8.0
Please specify the location where CUDA 8.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: [enter]
Please specify the Cudnn version you want to use. [Leave empty to use system default]: 5
Please specify the location where cuDNN 5 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: [enter]
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
[Default is: “3.5,5.2”]: 5.2,6.1 [see https://developer.nvidia.com/cuda-gpus]
Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Setting up CUPTI include
Setting up CUPTI lib64
Configuration finished
Then call bazel to build the TensorFlow pip package:
만일 아래의 command가 안될 때는
bazel clean
을 실행하고 다시 실행할 것.
bazel build -c opt –config=cuda //tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
And finally install the TensorFlow pip package
sudo pip install –upgrade /tmp/tensorflow_pkg/tensorflow-0.12*
텐서플로우 pip 패키지는 protobuf pip 패키지 버전 3.0.0b2를 필요로 합니다. PyPI에서 다운받을 수 있는(pip install protobuf를 사용해서) Protobuf의 pip 패키지는 파이썬 만으로 개발된 라이브러리로 C++ 구현보다 직렬화/역직렬화시 10~50배 느립니다. Protobuf는 빠른 프로토콜 파싱을 위한 C++ 바이너리 확장을 지원합니다. 이 확장은 표준 파이썬 PIP 패키지에는 포함되어 있지 않습니다. 우리는 이 바이너리 확장을 포함한 protobuf pip 패키지를 자체적으로 만들었습니다. 다음 명령을 사용해 자체적으로 만든 protobuf pip 패키지를 설치할 수 있습니다:
Upgrade to the latest version of the protobuf package:
Python 2.7:
$ sudo pip install –upgrade https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0b2.post2-cp27-none-linux_x86_64.whl
Python 3.4:
$ sudo pip3 install –upgrade https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0b2.post2-cp34-none-linux_x86_64.whl
cd ..
pip install tensorflow 명령은 파이썬으로된 기본 pip 패키지를 설치하므로 위 패키지를 설치하려면 반드시 텐서플로우를 설치하고 난 후에 합니다. 위 pip 패키지는 이미 설치된 protobuf 패키지를 덮어 씁니다. 바이너리 pip 패키지는 64M 넘는 메세지에 대한 지원을 이미 하고 있어 아래와 같은 에러가 이미 해결 되었습니다:
[libprotobuf ERROR google/protobuf/src/google/protobuf/io/coded_stream.cc:207] A
protocol message was rejected because it was too big (more than 67108864 bytes).
To increase the limit (or to disable these warnings), see
CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
To test the installation, open an interactive Python shell and import the TensorFlow module:
$ cd
$ python
…
import tensorflow as tf
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally
With the TensorFlow module imported, the next step to test the installation is to create a TensorFlow Session, which will initialize the available computing devices and provide a means of executing computation graphs:
sess = tf.Session()
This command will print out some information on the detected hardware configuration. For example, the output on a system containing a Tesla M40 GPU is:
sess = tf.Session()
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties:
name: Tesla M40
major: 5 minor: 2 memoryClockRate (GHz) 1.112
pciBusID 0000:04:00.0
Total memory: 11.25GiB
Free memory: 11.09GiB
…
To manually control which devices are visible to TensorFlow, set the CUDA_VISIBLE_DEVICES environment variable when launching Python. For example, to force the use of only GPU 0:
$ CUDA_VISIBLE_DEVICES=0 python
You should now be able to run a Hello World application:
hello_world = tf.constant(“Hello, TensorFlow!”)
print sess.run(hello_world)
Hello, TensorFlow!
print sess.run(tf.constant(123)*tf.constant(456))
56088
TensorFlow의 구현 코드(TensorFlow implementation)를 통해 graph에 정의된 내용이 실행가능한 작업들(operation)로 변환되고 CPU나 GPU같이 이용가능한 연산 자원들에 뿌려집니다. 코드로 어느 CPU 혹은 GPU를 사용할 지 명시적으로 지정할 필요는 없습니다. 작업을 가능한 한 많이 처리하기 위해 TensorFlow는 (컴퓨터가 GPU를 가지고 있다면) 첫 번째 GPU를 이용하니까요.
만약 컴퓨터에 복수의 GPU가 있어서 이를 사용하려면, op을 어느 하드웨어에 할당할 지 명시적으로 밝혀야 합니다. 작업에 사용할 CPU 혹은 GPU를 지정하려면 with…Device 구문을 사용하면 됩니다.
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
...
이용할 CPU 혹은 GPU는 문자열로 지정할 수 있습니다. 현재 지원되는 것은 아래와 같습니다.
- "/cpu:0": 컴퓨터의 CPU.
- "/gpu:0": 컴퓨터의 1번째 GPU.
- "/gpu:1": 컴퓨터의 2번쨰 GPU.
아래의 글은 https://tensorflow.blog/2017/01/27/tensorflow-1-0-0-rc0-release/에서 퍼 온 글이다.
파이썬 2.7
Ubuntu/Linux 64-bit, CPU only, Python 2.7
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc0-cp27-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp27-none-linux_x86_64.whl
# Mac OS X, CPU only, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0rc0-py2-none-any.whl
# Mac OS X, GPU enabled, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0rc0-py2-none-any.whl
파이썬 3.x
Ubuntu/Linux 64-bit, CPU only, Python 3.3
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc0-cp33-cp33m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.3
Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp33-cp33m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, CPU only, Python 3.4
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc0-cp34-cp34m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp34-cp34m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, CPU only, Python 3.5
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc0-cp35-cp35m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp35-cp35m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, CPU only, Python 3.6
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0rc0-cp36-cp36m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.6
Requires CUDA toolkit 8.0 and CuDNN v5.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp36-cp36m-linux_x86_64.whl
# Mac OS X, CPU only, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0rc0-py3-none-any.whl
# Mac OS X, GPU enabled, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0rc0-py3-none-any.whl
설치
$ sudo pip install –upgrade $TF_BINARY_URL
C:> pip install –upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.0.0rc0-cp35-cp35m-win_amd64.whl
C:> pip install –upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.0.0rc0-cp35-cp35m-win_amd64.whl